Tuesday, May 27, 2008

Melting Glaciers May Release DDT And Contaminate Antarctic Environment


Source:
ScienceDaily (May 27, 2008) — In an unexpected consequence of climate change, scientists are raising the possibility that glacial melting is releasing large amounts of the banned pesticide DDT, which is contaminating the environment in Antarctica.
The study is scheduled for the June 1 issue of ACS’ bi-weekly journal Environmental Science & Technology.
In the study, Heidi N. Geisz and colleagues estimate that up to 2.0-8.8 pounds of DDT are released into coastal waters annually along the Western Antarctic Ice Sheet from glacial meltwater. The researchers point out that DDT reaches Antarctica by long-range atmospheric transport in snow, and then gets concentrated in the food chain.
DDT has been banned in the northern hemisphere and has been regulated worldwide since the 1970s. Geisz found, however, that DDT levels in the Adelie penguin have been unchanged since the 1970s, despite an 80 percent reduction in global use.
Global warming may explain that contradiction, they say. As the annual winter temperature on the Antarctic Peninsula has increased by about 10 degrees Fahrenheit in the last 30 years, glaciers have retreated. The possibility that glacial meltwater has contaminated Antarctic organisms with DDT, the study says, “has compelling consequences” if global warming should continue and intensify.
Fausto Intilla - www.oloscience.com

Scorched Earth Millenium Map Shows 'Fire Scars'


Source:
ScienceDaily (May 27, 2008) — A geographer from the University of Leicester has produced for the first time a map of the scorched Earth for every year since the turn of the Millennium.
Dr Kevin Tansey, of the Department of Geography, a leading scientist in an international team, created a visual impression of the fire scars on our planet between 2000 and 2007. The work was funded by the Joint Research Centre of the European Commission.
The map reveals that between 3.5 and 4.5 million km2 of vegetation burns on an annual basis. This is an area equivalent to the European Union (EU27) and larger than the country of India that is burnt every year.
The information is vital for scientists and agencies involved in monitoring global warming, measuring and understanding pollutants in the atmosphere, managing forests and controlling fire and even for predicting future fire occurrence.
Dr Tansey, a Lecturer in Remote Sensing at the University of Leicester, said: "We have produced, for the first time, a global data base and map of the occurrence of fire scars covering the period 2000-2007. Prior to this development, data were only available for the year 2000. With seven years of data, it is not possible to determine if there is an increasing trends in the occurrence of fire, but we have significant year-to-year differences, of the order of 20%, in the area that is burnt.
"The work was undertaken with colleagues from the Joint Research Centre of the European Commission (Italy) and the Université catholique de Louvain (Belgium).
"This unique data set is in much demand by a large community of scientists interested in climate change, vegetation monitoring, atmospheric chemistry and carbon storage and flows.
"We have used the VEGETATION instrument onboard the SPOT European satellite, which collects reflected solar energy from the Earth's surface, providing global coverage on almost a daily basis.
"When vegetation burns the amount of reflected energy is altered, long enough for us to make an observation of the fire scar. Supercomputers located in Belgium were used to process the vast amounts of satellite data used in the project. At the moment, we have users working towards predicting future fire occurrence and fire management issues in the Kruger Park in southern Africa".
"The majority of fires occur in Africa. Large swathes of savannah grasslands are cleared every year, up to seven times burnt in the period 2000-2007 (see Figure 1). The system is sustainable because the grass regenerates very quickly during the wet season. From a carbon perspective, there is a net balance due to the regenerating vegetation acting as a carbon sink. Fires in forests are more important as the affected area becomes a carbon source for a number of years.
"The forest fires last summer in Greece and in Portugal a couple of years back, remind us that we need to understand the impact of fire on the environment and climate to manage the vegetation of the planet more effectively. Probably 95% of all vegetation fires have a human source; crop stubble burning, forest clearance, hunting, arson are all causes of fire across the globe. Fire has been a feature of the planet in the past and under a scenario of a warmer environment will certainly be a feature in the future".
The project was funded by the European Commission, through DG Joint Research Centre.
Fausto Intilla - www.oloscience.com

Tuesday, May 13, 2008

Hot Climate Could Shut Down Plate Tectonics


Source:
ScienceDaily (May 13, 2008) — A new study of possible links between climate and geophysics on Earth and similar planets finds that prolonged heating of the atmosphere can shut down plate tectonics and cause a planet's crust to become locked in place.
"The heat required goes far beyond anything we expect from human-induced climate change, but things like volcanic activity and changes in the sun's luminosity could lead to this level of heating," said lead author Adrian Lenardic, associate professor of Earth science at Rice University. "Our goal was to establish an upper limit of naturally generated climate variation beyond which the entire solid planet would respond."
Lenardic said the research team wanted to better understand the differences between the Earth and Venus and establish the potential range of conditions that could exist on Earth-like planets beyond the solar system. The team includes Lenardic and co-authors Mark Jellinek of the University of British Columbia in Vancouver and Louis Moresi of Monash University in Clayton, Australia. The research is available online from the journal Earth and Planetary Science Letters.
The findings may explain why Venus evolved differently from Earth. The two planets are close in size and geological makeup, but Venus' carbon dioxide-rich atmosphere is almost 100 times more dense than the Earth's and acts like a blanket. As a result, Venus' surface temperature is hotter than that of even Mercury, which is twice as close to the sun.
The Earth's crust -- along with carbon trapped on the oceans' floors -- gets returned to the interior of the Earth when free-floating sections of crust called tectonic plates slide beneath one another and return to the Earth's mantle. The mantle is a flowing layer of rock that extends from the planet's outer core, about 1,800 miles below the surface, to within about 30 miles of the surface, just below the crust.
"We found the Earth's plate tectonics could become unstable if the surface temperature rose by 100 degrees Fahrenheit or more for a few million years," Lenardic said. "The time period and the rise in temperatures, while drastic for humans, are not unreasonable on a geologic scale, particularly compared to what scientists previously thought would be required to affect a planet's geodynamics."
Conventional wisdom holds that plate tectonics is both stable and self-correcting, but that view relies on the assumption that excess heat from the Earth's mantle can efficiently escape through the crust. The stress generated by flowing mantle helps keep tectonic plates in motion, and the mantle can become less viscous if it heats up. The new findings show that prolonged heating of a planet's crust via rising atmospheric temperatures can heat the deep inside of the planet and shut down tectonic plate movement.
"We found a corresponding spike in volcanic activity could accompany the initial locking of the tectonic plates," Lenardic said. "This may explain the large percentage of volcanic plains that we find on Venus."
Venus' surface, which shows no outward signs of tectonic activity, is bone dry and heavily scarred with volcanoes. Scientists have long believed that Venus' crust, lacking water to help lubricate tectonic plate boundaries, is too rigid for active plate tectonics.
Lenardic said one of the most significant findings in the new study is that the atmospheric heating needed to shut down plate tectonics is considerably less than the critical temperature beyond which free water could exist on the Earth's surface.
"The water doesn't have to boil away for irrevocable heating to occur," Lenardic said. "The cycle of heating can be kicked off long before that happens. All that's required is enough prolonged surface heating to cause a feedback loop in the planet's mantle convection cycle."
The research was supported by the National Science Foundation and the Canadian Institute for Advanced Research.
Fausto Intilla - www.oloscience.com

Solar Variability: Striking A Balance With Climate Change


Source:

ScienceDaily (May 12, 2008) — The sun has powered almost everything on Earth since life began, including its climate. The sun also delivers an annual and seasonal impact, changing the character of each hemisphere as Earth's orientation shifts through the year. Since the Industrial Revolution, however, new forces have begun to exert significant influence on Earth's climate.
"For the last 20 to 30 years, we believe greenhouse gases have been the dominant influence on recent climate change," said Robert Cahalan, climatologist at NASA’s Goddard Space Flight Center in Greenbelt, Md.
For the past three decades NASA scientists have investigated the unique relationship between the sun and Earth. Using space-based tools, like the Solar Radiation and Climate Experiment (SORCE), they have studied how much solar energy illuminates Earth, and explored what happens to that energy once it penetrates the atmosphere. The amount of energy that reaches Earth's outer atmosphere is called the total solar irradiance. Total solar irradiance is variable over many different timescales, ranging from seconds to centuries due to changes in solar activity.
The sun goes through roughly an 11-year cycle of activity, from stormy to quiet and back again. Solar activity often occurs near sunspots, dark regions on the sun caused by concentrated magnetic fields. The solar irradiance measurement is much higher during solar maximum, when sunspot cycle and solar activity is high, versus solar minimum, when the sun is quiet and there are usually no sunspots.
"The fluctuations in the solar cycle impacts Earth's global temperature by about 0.1 degree Celsius, slightly hotter during solar maximum and cooler during solar minimum," said Thomas Woods, solar scientist at the University of Colorado in Boulder. "The sun is currently at its minimum, and the next solar maximum is expected in 2012."
Using SORCE, scientists have learned that about 1,361 watts per square meter of solar energy reaches Earth's outermost atmosphere during the sun's quietest period. But when the sun is active, 1.3 watts per square meter (0.1 percent) more energy reaches Earth. "This TSI measurement is very important to climate models that are trying to assess Earth-based forces on climate change," said Cahalan.
Over the past century, Earth's average temperature has increased by approximately 0.6 degrees Celsius (1.1 degrees Fahrenheit). Solar heating accounts for about 0.15 C, or 25 percent, of this change, according to computer modeling results published by NASA Goddard Institute for Space Studies researcher David Rind in 2004. Earth's climate depends on the delicate balance between incoming solar radiation, outgoing thermal radiation and the composition of Earth's atmosphere. Even small changes in these parameters can affect climate. Around 30 percent of the solar energy that strikes Earth is reflected back into space. Clouds, atmospheric aerosols, snow, ice, sand, ocean surface and even rooftops play a role in deflecting the incoming rays. The remaining 70 percent of solar energy is absorbed by land, ocean, and atmosphere.
"Greenhouse gases block about 40 percent of outgoing thermal radiation that emanates from Earth," Woods said. The resulting imbalance between incoming solar radiation and outgoing thermal radiation will likely cause Earth to heat up over the next century, accelerating the melting polar ice caps, causing sea levels to rise and increasing the probability of more violent global weather patterns.
Non-Human Influences on Climate Change
Before the Industrial Age, the sun and volcanic eruptions were the major influences on Earth's climate change. Earth warmed and cooled in cycles. Major cool periods were ice ages, with the most recent ending about 11,000 years ago.
"Right now, we are in between major ice ages, in a period that has been called the Holocene,” said Cahalan. “Over recent decades, however, we have moved into a human-dominated climate that some have termed the Anthropocene. The major change in Earth's climate is now really dominated by human activity, which has never happened before."
The sun is relatively calm compared to other stars. "We don't know what the sun is going to do a hundred years from now," said Doug Rabin, a solar physicist at Goddard. "It could be considerably more active and therefore have more influence on Earth's climate."
Or, it could be calmer, creating a cooler climate on Earth similar to what happened in the late 17th century. Almost no sunspots were observed on the sun's surface during the period from 1650 to 1715. This extended absence of solar activity may have been partly responsible for the Little Ice Age in Europe and may reflect cyclic or irregular changes in the sun's output over hundreds of years. During this period, winters in Europe were longer and colder by about 1 C than they are today.
Since then, there seems to have been on average a slow increase in solar activity. Unless we find a way to reduce the amount of greenhouse gases we put into the atmosphere, such as carbon dioxide from fossil fuel burning, the solar influence is not expected to dominate climate change. But the solar variations are expected to continue to modulate both warming and cooling trends at the level of 0.1 to 0.2 degrees Celsius (0.18 to 0.26 Fahrenheit) over many years.
Future Measurements of Solar Variability
For three decades, a suite of NASA and European Space Agency satellites have provided scientists with critical measurements of total solar irradiance. The Total Irradiance Monitor, also known as the TIM instrument, was launched in 2003 as part of the NASA’s SORCE mission, and provides irradiance measurements with state-of-the-art accuracy. TIM has been rebuilt as part of the Glory mission, scheduled to launch in 2009. Glory's TIM instrument will continue an uninterrupted 30-year record of solar irradiance measurements and will help researchers better understand the sun's direct and indirect effects on climate. Glory will also collect data on aerosols, one of the least understood pieces of the climate puzzle.

Fausto Intilla - www.oloscience.com

Sunday, May 4, 2008

Coherent Description Of Earth's Inaccessible Interior Clarifies Mantle Motion


Source:
ScienceDaily (May 4, 2008) — A new model of inner Earth constructed by Arizona State University researchers pulls past information and hypotheses into a coherent story to clarify mantle motion.
"The past maybe two or three years there have been a lot of papers in Science and Nature about the deep mantle from seismologists and mineral physicists and it's getting really confusing because there are contradictions amongst the different papers," says Ed Garnero, seismologist and an associate professor in Arizona State University's School of Earth and Space Exploration.
"But we've discovered that there is a single framework that is compatible with all these different findings," he adds.
Garnero partnered with geodynamicist and assistant professor Allen McNamara, also in the School of Earth and Space Exploration in ASU's College of Liberal Arts and Sciences, to synthesize the information for their paper to be published in the May 2 issue of Science.
"Our goal was to bring the latest seismological and dynamical results together to put some constraints on the different hypotheses we have for the mantle. If you Google 'mantle' you'll see 20 different versions of what people are teaching," explains McNamara.
According to the ASU scientists, all this recent research of the past few years fits into a single story. But what is that story? Is it a complicated and exceedingly idiosyncratic story or is it a straightforward simple framework?
"In my opinion," explains Garnero, "it's simple. It doesn't really appeal to anything new; it just shows how all those things can fit together."
The pair paints a story for a chemically complex inner earth, a model that sharply contrasts the heavily relied upon paradigm of the past few decades that the mantle is all one thing and well mixed. The original model was composed of simple concentric spheres representing the core, mantle and crust -- but the inner Earth isn't that simple.
What lies beneath
Earth is made up of several layers. Its skin, the crust, extends to a depth of about 40 kilometers (25 miles). Below the crust is the mantle area, which continues to roughly halfway to the center of Earth. The mantle is the thick layer of silicate rock surrounding the dense, iron-nickel core, and it is subdivided into the upper and lower mantle, extending to a depth of about 2,900 km (1,800 miles). The outer core is beneath that and extends to 5,150 km (3,200 mi) and the inner core to about 6,400 km (4,000 mi).
The inner Earth is not a static storage space of the geologic history of our planet -- it is continuously churning and changing. How a mantle convects and how the plates move is very different depending on whether the mantle is isochemical (chemically homogenous made entirely of only one kind of material) or heterogeneous, composed of different kinds of compounds.
Garnero and McNamara's framework is based upon the assumption that the Earth's mantle is not isochemical. Garnero says new data supports a mantle that consists of more than one type of material.
"Imagine a pot of water boiling. That would be all one kind of composition. Now dump a jar of honey into that pot of water. The honey would be convecting on its own inside the water and that's a much more complicated system," McNamara explains.
Observations, modeling and predictions have shown that the deepest mantle is complex and significantly more anomalous than the rest of the lower mantle. To understand this region, seismologists analyze tomographic images constructed from seismic wave readings. For 25 years they have been detecting differences in the speeds of waves that go through the mantle.
This difference in wave speeds provides an "intangible map" of the major boundaries inside the mantle -- where hot areas are, where cold areas are, where there are regions that might be a different composition, etc. The areas with sluggish wave speeds seem to be bounded rather abruptly by areas with wave speeds that are not sluggish or delayed. An abrupt change in wave speed means that something inside the mantle has changed.
If the mantle is all the same material, then researchers shouldn't be observing the boundary between hot and cold in the mantle as a super sharp edge and the temperature anomalies should also be more spread out. The abrupt change in velocity was noticeable, yet they didn't know what caused it.
Garnero and McNamara believe that the key aspect to this story is the existence of thermo-chemical piles. On each side of the Earth there are two big, chemically distinct, dense "piles" of material that are hundreds of kilometers thick -- one beneath the Pacific and the other below the Atlantic and Africa. These piles are two nearly antipodal large low shear velocity provinces situated at the base of Earth's mantle.
"You can picture these piles like peanut butter. It is solid rock but rock under very high pressures and temperatures become soft like peanut butter so any stresses will cause it to flow," says McNamara.
Recently mineral physicists discovered that under high pressure the atoms in the rocks go through a phase transition, rearranging themselves into a tighter configuration.
In these thermo-chemical piles the layering is consistent with a new high pressure phase of the most abundant lower mantle mineral called post-perovskite, a material that exists specifically under high pressures that cause new arrangements of atoms to be formed.
Perovskite is a specific arrangement of silicon and magnesium and iron atoms.
"At a depth a few hundred kilometers above the core, the mineral physicists tell us that the rocks' atoms can go into this new structure and it should happen abruptly and that's consistent with the velocity discontinuities that the seismologists have been seeing for decades," says Garnero.
These thick piles play a key role in the convection currents. Ultra-low velocity zones live closest to the edges of the piles because that's the hottest regions of the mantle due to the currents that go against the pile walls as they bring the heat up from the core. Off their edges exist instability upwellings that turn out to be the plumes that feed hot spots such as Hawaii, Iceland and the Galapagos.
"We observe the motions of plate tectonics very well, but we can't fully understand how the mantle is causing these motions until we better understand how the mantle itself is convecting," says McNamara. "The piles dictate how the convective cycles happen, how the currents circulate. If you don't have piles then convection will be completely different."
Adapted from materials provided by Arizona State University, via EurekAlert!, a service of AAAS.
Fausto Intilla - www.oloscience.com