Showing posts with label Fossils. Show all posts
Showing posts with label Fossils. Show all posts

Monday, June 22, 2009

Carbon Dioxide Higher Today Than Last 2.1 Million Years

SOURCE

ScienceDaily (June 21, 2009) — Researchers have reconstructed atmospheric carbon dioxide levels over the past 2.1 million years in the sharpest detail yet, shedding new light on its role in the earth's cycles of cooling and warming.
The study, in the June 19 issue of the journal Science, is the latest to rule out a drop in CO2 as the cause for earth's ice ages growing longer and more intense some 850,000 years ago. But it also confirms many researchers' suspicion that higher carbon dioxide levels coincided with warmer intervals during the study period.
The authors show that peak CO2 levels over the last 2.1 million years averaged only 280 parts per million; but today, CO2 is at 385 parts per million, or 38% higher. This finding means that researchers will need to look back further in time for an analog to modern day climate change.
In the study, Bärbel Hönisch, a geochemist at Lamont-Doherty Earth Observatory, and her colleagues reconstructed CO2 levels by analyzing the shells of single-celled plankton buried under the Atlantic Ocean, off the coast of Africa. By dating the shells and measuring their ratio of boron isotopes, they were able to estimate how much CO2 was in the air when the plankton were alive. This method allowed them to see further back than the precision records preserved in cores of polar ice, which go back only 800,000 years.
The planet has undergone cyclic ice ages for millions of years, but about 850,000 years ago, the cycles of ice grew longer and more intense—a shift that some scientists have attributed to falling CO2 levels. But the study found that CO2 was flat during this transition and unlikely to have triggered the change.
"Previous studies indicated that CO2 did not change much over the past 20 million years, but the resolution wasn't high enough to be definitive," said Hönisch. "This study tells us that CO2 was not the main trigger, though our data continues to suggest that greenhouse gases and global climate are intimately linked."
The timing of the ice ages is believed to be controlled mainly by the earth's orbit and tilt, which determines how much sunlight falls on each hemisphere. Two million years ago, the earth underwent an ice age every 41,000 years. But some time around 850,000 years ago, the cycle grew to 100,000 years, and ice sheets reached greater extents than they had in several million years—a change too great to be explained by orbital variation alone.
A global drawdown in CO2 is just one theory proposed for the transition. A second theory suggests that advancing glaciers in North America stripped away soil in Canada, causing thicker, longer lasting ice to build up on the remaining bedrock. A third theory challenges how the cycles are counted, and questions whether a transition happened at all.
The low carbon dioxide levels outlined by the study through the last 2.1 million years make modern day levels, caused by industrialization, seem even more anomalous, says Richard Alley, a glaciologist at Pennsylvania State University, who was not involved in the research.
"We know from looking at much older climate records that large and rapid increase in CO2 in the past, (about 55 million years ago) caused large extinction in bottom-dwelling ocean creatures, and dissolved a lot of shells as the ocean became acidic," he said. "We're heading in that direction now."
The idea to approximate past carbon dioxide levels using boron, an element released by erupting volcanoes and used in household soap, was pioneered over the last decade by the paper's coauthor Gary Hemming, a researcher at Lamont-Doherty and Queens College. The study's other authors are Jerry McManus, also at Lamont; David Archer at the University of Chicago; and Mark Siddall, at the University of Bristol, UK.
Funding for the study was provided by the National Science Foundation.
Journal reference:
. Atmospheric Carbon Dioxide Concentrations Across the Mid-Pleistocene Transition. Science, June 19, 2009
Adapted from materials provided by The Earth Institute at Columbia University.

Monday, September 3, 2007

Volcanoes Key To Earth's Oxygen Atmosphere


Source:

Science Daily — A switch from predominantly undersea volcanoes to a mix of undersea and terrestrial ones shifted the Earth's atmosphere from devoid of oxygen to one with free oxygen, according to geologists.
"The rise of oxygen allowed for the evolution of complex oxygen-breathing life forms," says Lee R. Kump, professor of geoscience, Penn State.
Before 2.5 billion years ago, the Earth's atmosphere lacked oxygen. However, biomarkers in rocks 200 million years older than that period, show oxygen-producing cyanobacteria released oxygen at the same levels as today. The oxygen produced then, had to be going somewhere.
"The absence of oxidized soil profiles and red beds indicates that oxidative weathering rates were negligible during the Archaean," the researchers report in the Aug. 30 issue of Nature.
The ancient Earth should have had an oxygen atmosphere but something was converting, reducing, the oxygen and removing it from the atmosphere. The researchers suggest that submarine volcanoes, producing a reducing mixture of gases and lavas, effectively scrubbed oxygen from the atmosphere, binding it into oxygen containing minerals.
"The Archaean more than 2.5 billion years ago seemed to be dominated by submarine volcanoes," says Kump. "Subaerial andesite volcanoes on thickened continental crust seem to be almost absent in the Archaean."
About 2.5 billion years ago at the Archaean/Proterozoic boundary, when stabilized continental land masses arose and terrestrial volcanoes appeared, markers show that oxygen began appearing in the atmosphere.
Kump and Mark E. Barley, professor of geology, University of Western Australia, looked at the geologic record from the Archaean and the Palaeoproterozoic in search of the remains of volcanoes. They found that the Archaean was nearly devoid of terrestrial volcanoes, but heavily populated by submarine volcanoes. The Palaeoproterozoic, however, had ample terrestrial volcanic activity along with continuing submarine vulcanism. Subaerial volcanoes arose after 2.5 billion years ago and did not strip oxygen from the air. Having a mix of volcanoes dominated by terrestrial volcanoes allowed oxygen to exist in the atmosphere.
Terrestrial volcanoes could become much more common in the Palaeoproterozoic because land masses stabilized and the current tectonic regime came into play.
The researchers looked at the ratio of submarine to subaerial volcanoes through time. Because submarine volcanoes erupt at lower temperatures than terrestrial volcanoes, they are more reducing. As long as the reducing ability of the submarine volcanoes was larger than the amounts of oxygen created, the atmosphere had no oxygen. When terrestrial volcanoes began to dominate, oxygen levels increased.
The National Science Foundation, NASA Astrobiology Institute and the Australian Research Council supported this work.
Note: This story has been adapted from a news release issued by Penn State.

Fausto Intilla