Showing posts with label models. Show all posts
Showing posts with label models. Show all posts

Monday, June 22, 2009

Carbon Dioxide Higher Today Than Last 2.1 Million Years

SOURCE

ScienceDaily (June 21, 2009) — Researchers have reconstructed atmospheric carbon dioxide levels over the past 2.1 million years in the sharpest detail yet, shedding new light on its role in the earth's cycles of cooling and warming.
The study, in the June 19 issue of the journal Science, is the latest to rule out a drop in CO2 as the cause for earth's ice ages growing longer and more intense some 850,000 years ago. But it also confirms many researchers' suspicion that higher carbon dioxide levels coincided with warmer intervals during the study period.
The authors show that peak CO2 levels over the last 2.1 million years averaged only 280 parts per million; but today, CO2 is at 385 parts per million, or 38% higher. This finding means that researchers will need to look back further in time for an analog to modern day climate change.
In the study, Bärbel Hönisch, a geochemist at Lamont-Doherty Earth Observatory, and her colleagues reconstructed CO2 levels by analyzing the shells of single-celled plankton buried under the Atlantic Ocean, off the coast of Africa. By dating the shells and measuring their ratio of boron isotopes, they were able to estimate how much CO2 was in the air when the plankton were alive. This method allowed them to see further back than the precision records preserved in cores of polar ice, which go back only 800,000 years.
The planet has undergone cyclic ice ages for millions of years, but about 850,000 years ago, the cycles of ice grew longer and more intense—a shift that some scientists have attributed to falling CO2 levels. But the study found that CO2 was flat during this transition and unlikely to have triggered the change.
"Previous studies indicated that CO2 did not change much over the past 20 million years, but the resolution wasn't high enough to be definitive," said Hönisch. "This study tells us that CO2 was not the main trigger, though our data continues to suggest that greenhouse gases and global climate are intimately linked."
The timing of the ice ages is believed to be controlled mainly by the earth's orbit and tilt, which determines how much sunlight falls on each hemisphere. Two million years ago, the earth underwent an ice age every 41,000 years. But some time around 850,000 years ago, the cycle grew to 100,000 years, and ice sheets reached greater extents than they had in several million years—a change too great to be explained by orbital variation alone.
A global drawdown in CO2 is just one theory proposed for the transition. A second theory suggests that advancing glaciers in North America stripped away soil in Canada, causing thicker, longer lasting ice to build up on the remaining bedrock. A third theory challenges how the cycles are counted, and questions whether a transition happened at all.
The low carbon dioxide levels outlined by the study through the last 2.1 million years make modern day levels, caused by industrialization, seem even more anomalous, says Richard Alley, a glaciologist at Pennsylvania State University, who was not involved in the research.
"We know from looking at much older climate records that large and rapid increase in CO2 in the past, (about 55 million years ago) caused large extinction in bottom-dwelling ocean creatures, and dissolved a lot of shells as the ocean became acidic," he said. "We're heading in that direction now."
The idea to approximate past carbon dioxide levels using boron, an element released by erupting volcanoes and used in household soap, was pioneered over the last decade by the paper's coauthor Gary Hemming, a researcher at Lamont-Doherty and Queens College. The study's other authors are Jerry McManus, also at Lamont; David Archer at the University of Chicago; and Mark Siddall, at the University of Bristol, UK.
Funding for the study was provided by the National Science Foundation.
Journal reference:
. Atmospheric Carbon Dioxide Concentrations Across the Mid-Pleistocene Transition. Science, June 19, 2009
Adapted from materials provided by The Earth Institute at Columbia University.

Friday, June 12, 2009

Typhoons Trigger Slow Earthquakes


ScienceDaily (June 12, 2009) — Scientists have made the surprising finding that typhoons trigger slow earthquakes, at least in eastern Taiwan. Slow earthquakes are non-violent fault slippage events that take hours or days instead of a few brutal seconds to minutes to release their potent energy. The researchers discuss their data in a study published the June 11, issue of Nature.
"From 2002 to 2007 we monitored deformation in eastern Taiwan using three highly sensitive borehole strainmeters installed 650 to 870 feet (200-270 meters) deep. These devices detect otherwise imperceptible movements and distortions of rock," explained coauthor Selwyn Sacks of Carnegie's Department of Terrestrial Magnetism. "We also measured atmospheric pressure changes, because they usually produce proportional changes in strain, which we can then remove."
Taiwan has frequent typhoons in the second half of each year but is typhoon free during the first 4 months. During the five-year study period, the researchers, including lead author Chiching Liu (Academia Sinica, Taiwan), identified 20 slow earthquakes that each lasted from hours to more than a day. The scientists did not detect any slow events during the typhoon-free season. Eleven of the 20 slow earthquakes coincided with typhoons. Those 11 were also stronger and characterized by more complex waveforms than the other slow events.
"These data are unequivocal in identifying typhoons as triggers of these slow quakes. The probability that they coincide by chance is vanishingly small," remarked coauthor Alan Linde, also of Carnegie.
How does the low pressure trigger the slow quakes? The typhoon reduces atmospheric pressure on land in this region, but does not affect conditions at the ocean bottom, because water moves into the area and equalizes pressure. The reduction in pressure above one side of an obliquely dipping fault tends to unclamp it. "This fault experiences more or less constant strain and stress buildup," said Linde. "If it's close to failure, the small perturbation due to the low pressure of the typhoon can push it over the failure limit; if there is no typhoon, stress will continue to accumulate until it fails without the need for a trigger."
"It's surprising that this area of the globe has had no great earthquakes and relatively few large earthquakes," Linde remarked. "By comparison, the Nankai Trough in southwestern Japan, has a plate convergence rate about 4 centimeters per year, and this causes a magnitude 8 earthquake every 100 to 150 years. But the activity in southern Taiwan comes from the convergence of same two plates, and there the Philippine Sea Plate pushes against the Eurasian Plate at a rate twice that for Nankai."
The researchers speculate that the reason devastating earthquakes are rare in eastern Taiwan is because the slow quakes act as valves, releasing the stress frequently along a small section of the fault, eliminating the situation where a long segment sustains continuous high stresses until it ruptures in a single great earthquake. The group is now expanding their instrumentation and monitoring for this research.
Adapted from materials provided by Carnegie Institution, via EurekAlert!, a service of AAAS.

Friday, June 5, 2009

Height Of Large Waves Changes According To Month

SOURCE

ScienceDaily (June 2, 2009) — A team of researchers from the University of Cantabria has developed a statistical model that makes it possible to study the variability of extreme waves throughout the year. Their study has shown that there are seasonal variations in the height of waves reaching Spain's coasts, and stresses the importance of this data in planning and constructing marine infrastructures.
"Anybody who observes waves can see that they are not the same height in winter and summer, but rather that their height varies over time, and we have applied a ‘non- seasonal' statistical model in order to measure extreme events such as these," says Fernando J. Méndez, an engineer at the Institute of Environmental Hydraulics at the University of Cantabria and co-author of a study published recently in the journal Coastal Engineering.
The new model can chart the pattern of extreme waves "with a greater degree of reliability", by studying ‘significant wave height' (Hs) in relation to a specific return period. The Hs is the representative average height of the sea, provided by buoys (it is calculated by measuring one in three of the highest waves), and the return period is the average time needed for the event to happen.
For example, if a wave height of 15 metres is established at a certain point on the coast with a return period of 100 years, this means that, on average, a wave of 15 metres could reach this point once every 100 years. "This can be very useful when it comes to building an oil platform in the sea or a particular piece of coastal infrastructure", explains Méndez.
The researchers have used data recorded between 1984 and 2003 by five coastal buoys located near the cities of Bilbao, in Vizcaya; Gijón, in Asturias; La Coruña, Cádiz and Valencia in order to demonstrate the validity of their model. The results show that extreme Hs values vary according to location and the month of the year.
The meteorological component of extreme waves
The results showed a similar seasonal variation between waves in Bilbao and Gijón, with waves being less than four metres high between May and September, but increasing after this to reach an average height of seven metres between December and January. The period of large waves in La Coruña extends from October to April, because of the city's westerly position and resulting exposure to more prolonged winter storms.
The Atlantic coast of Cádiz, meanwhile, reflects the characteristic calm of this area of sea between July and September, with Hs values below two metres. The figures for December and January, however, can vary a great deal from one year to another, reaching wave heights in excess of six metres.
Waves on the Mediterranean coast at Valencia measure between 3 and 3.5 metres from September until April, although the graphics reveal two peaks during this period, one of which coincides with the start of spring and the other with the autumn months, during which the phenomenon of the gota fría occurs. (Gota fría events are atmospheric cold air pools that cause rapid, torrential and very localised downpours and high winds).
"All these data are of vital importance in terms of coastal management, since they can establish the risk of flooding and are indispensable for the carrying out of marine construction work, for example infrastructure built close to the coast," says Melisa Menéndez, another of the study's authors. "In addition, they make it possible to calculate the likelihood of a maritime storm occurring."
The researcher also stresses that this information could be very useful in helping to better understand some biological processes, such as how the distribution of marine animals is affected by wave swell, and seaweed growth rates, as well as geological processes, such as how particulates and sediments are transported along the coast.
Extreme value theory
The model developed by the Spanish scientists is based on ‘extreme value theory', a recently-developed statistical discipline that aims to quantify the random behaviour of extreme events. The latest advances in this field have made it possible to better study climatic variability at various scales - over a year (seasonality), over consecutive years or decades (which allows climatic patterns to be derived), and over the long term (providing trends).
The study into extreme waves is on the seasonal scale, but the team has also studied extreme sea level values over almost a 100-year period, thanks to data gathered during the 20th Century by a mareograph located in Newlyn, in the United Kingdom. The scientists have already started to obtain information about extreme swell and sea level values at global level as part of a United Nations project to study the sea's impacts on coasts all over the planet, and how these affect climate change.
Journal references:
Melisa Menéndez, Fernando J. Méndez, Cristina Izaguirre, Alberto Luceño e Inigo J. Losada. The influence of seasonality on estimating return values of significant wave height. Coastal Engineering, 2009; 56 (3): 211 DOI: 10.1016/j.coastaleng.2008.07.004
Melisa Menendez, Fernando J. Mendez and Inigo J. Losada. Forecasting seasonal to interannual variability in extreme sea levels. ICES Journal of Marine Science, 2009; DOI: 10.1093/icesjms/fsp095
Adapted from materials provided by Plataforma SINC, via AlphaGalileo.